Wednesday, 27 September 2017

Some more thoughts on "above the MUF" propagation and the wool cycle

Thanks for the various posts and email which resulted from the last posting.

Leaving aside the obvious clash of meaning - the MUF we refer to here is not the actual maximum but above the calculated value for general use - I decided to have a couple of goes at being heard when there would appear to be no propagation (i.e. I was above the calculated MUF).

There was weak Es on 10m on 25 September, which seemed like a good time to try for the first time. Nobody was working anyone on 10m SSB, at least not in my area and not as reported on the DX cluster. The DX cluster is not a representation of activity but not very accurate - not everybody posts to it. Nevertheless the WSPR traces were rising and falling and there was some solid copy from that excellent reference station IU1DZZ.
10m WSPR at GM4FVM on 25 September
I cannot over emphasise how useful 10m WSPR is for watching VHF. Stations like Gianfranco's provide constant reference marker to monitor the progress of Es. In this case you can see the wavering trace, which lets you know that Es is just, and only just, reaching 10m.

For what it is worth, I try to reciprocate by transmitting on 10m WSPR as often as possible. Not only are the reception reports useful to me, but I cannot rule out the possibility that my signals may be useful to others.

It is worth noting too that there is general tendency for amateurs to listen on the band and if they hear nothing turn off. That is exactly the wrong attitude to WSPR, and it does not help on FT8 now that we know how it can receive unheard signals.

So, moving on to VHF, there were no SSB contacts on the cluster and nothing to hear on the SSB or CW parts of 6m. I turned to FT8 for two hours and worked these stations:-
6m contacts at GM4FVM on 25 September 2017
This was done at a time when there seemed to be little or no activity on SSB. Of course I cannot really be certain about this, as maybe everybody has deserted SSB and gone to FT8. However it is hard to argue that I wrote a piece on 1 September pointing out that my season had ended and I was winding down, only to work this lot on 25 September. So, maybe FT8 is extending my season. And they were not difficult contacts either ...
IZ4IRJ worked on 6m at GM4FVM on 25 September 2017

I must not get carried away either. It is a bit unusual for me to come on 6m on 25 September and actually try for contacts. Looking back through 10 years of logs I see that only in 2012 did I find a decent opening in late September. On that occasion I worked 5 stations in Italy on 70MHz on 22 September. That is fairly unusual, with the latest opening otherwise also being in 2012 when I was working into Czech Republic on 13 September. It is not impossible to imagine a Es opening at any time of the year, but a two hour opening like that was particularly pleasing so late in the year.

I cannot say that I ever really tried for 6m contacts as late as 25 September in previous years. Who knows what the results might have been, but experience suggested that it was pointless.

Anyway, whatever evidence this gave me that FT8 was extending my season, it wasn't enough. Not for me. So I chalked the 25 September event up to weak Es and resolved to try again when there was even less sign of Es.

I tried on 27 September. On this occasion there was no sign of Es on 10m WSPR. The plan this time was different. First I checked that there was almost no sign on Es on the MUF map (more or less anyway, as anyone on FT8 who gets an "above the MUF" contact will show up on the MUF map).
MUF map on DXMaps on 27 September 2017, just one square showing and it was an FT8 contact
Being fairly certain I was above the "MUF", I called CQ on FT8 for 6 minutes each on four likely beam headings. Then I looked to see if I had been heard, by checking the PSK reporter
PSK Reporter record for 6m FT8 reception of GM4FVM over a 30 minute period on 27 Setpember
In the half hour I was heard by 7 stations. I heard no-one and saw nothing on the FT8 waterfall.

So, what does this mean? I feel pretty sure that more than 7 stations received my signals, as not all stations using FT8 activate the PSK reporter service. But for the moment, let us stick with 7 as that should be plenty. Did any of those 7 reply to me, and why did I not seen any trace of them?

In fact this is similar to what I have been noticing since I first mentioned being reported by DK8NE back in June here and also here. Then it was on JT65 (which is slightly more sensitive but hampered by long tx/rx timing), now it is on FT8, but the results are similar. Back then we wondered if could this be ionoscatter or aircraft reflections.

Some other things are similar now too - for instance nobody is calling me back. Or, more accurately, I am not detecting anyone calling me back. Other things are different, for instance these reports came from various beam headings between East and South West, similar to the ones I used to transmit. Is that more likely to be aircraft reflections than the single path to DK8NE was?

The main conundrum remains - whether this is a novel method of propagation or just something we are more familiar with, why am I not having QSOs? When there was a little bit of Es in the background, I did have QSOs (on the 25 September), but then when there was no Es it seemed like "one way communication".

I began to wonder if nobody wanted to talk to me, or if I was doing something wrong. Then it occurred to me that those 7 stations were not working each other either. Nor any other station near me. Nor anybody else. Every so often PSK reporter would report a decoded contact, but no QSOs were reported on the cluster. So could it just be occasional random reception periods - but then again no. I only transmitted for 6 minutes in each direction and most stations reported me within two minutes of starting.

I spent a long time pondering the diagram for "above the MUF" propagation, trying to see if it would be non-symmetrical. Could it produce only one-way contacts? Maybe, but more likely reception would be widely dispersed so a weak signal would be received over a large area. This would also apply to any station who might reply. So, whilst I might not necessarily hear the stations I was seeing who had heard me, I am quite likely to hear any other station who might call. And I heard nothing on 27 September, and saw nothing on my waterfall.

So basically the puzzle from June goes on. My receiver is working as I can work stations during weak Es. Switching between all four rigs produces the same result. I can reach stations on otherwise flat bands, but I am not hearing them. Are they running less power than me? For this purpose I was running 200W, anything less does not seem to work when the band is "closed". Is it possible that no other station in Europe is running that amount of power and beaming at me?

Let me not personalise this, looking at the PSK Reporter and the cluster, it seems to affect everyone who is still on 6m. Have we all worked each other and are sitting on our hands now waiting for something more exotic?

What I think I need is a year-round FT8 sked with a station 600 - 1200 km from here running at least 200W of FT8 into a 3 element yagi (or better). Someone else who likes the sound of silence.
========================================
By the way, I am not sure if this is a seasonal thing but the alpacas have been shorn again.
The alpacas at Ayton Law on 27 September (looking like the previous photos but shorn of wool again)
I would have thought that they needed some reasonable covering for Winter. Now that the Es season is over (?) I would have thought that shearing was finished too.

Mrs FVM found some report which claimed that the average UK male spends more time sitting on the toilet than taking exercise. So I have extended my walk to avoid criticism and I have hidden the stop watch in case she tries timing me again. Timing me on the walk that is. My pedometer says it is 10,000 steps and generally it takes about an hour. Thus the walking route passes the alpacas and they do make a very odd noise. Rather like a grunt, but at least they do reply. Decoding it is not easy either.

Anyway, I thought alpacas were only shorn once per year.

I am listening tonight for an aurora. Maybe that only happens once a year too.

73

Jim
GM4FVM

Thursday, 21 September 2017

8 Sept aurora and "above the MUF" propagation with FT8, JT9 and JT65

Olli, DQ8BHA, whose blog is listed on the sidebar, writes some very interesting material. His description of the 8 September aurora is worth reading (remember to use the back arrow to return here!).

http://www.dh8bqa.de/major-x9-solar-flare-aurora-all-around/

=========================================
Thanks to David, GM4JJJ, for alerting me to an article by Carl, K9LA, in October 2017 QST magazine entitled "Understanding Propagation with JT65, JT9 and FT8".

This article brought me to one of those "D'oh!" moments. Suddenly things which should have been obvious fit into place and I realise that I should have worked this out myself.

The article explains that the ability of the slow WSJT-X modes to receive signals "below the noise level" means that we can work stations using these modes when the bands are closed. Now that was sweeping statement by me. SOMETIMES. Let us think about why this can happen.

It is well know that these modes (and WSPR) can successfully decode signals which are below the level of noise in our receivers. In fact, so can good CW operators using their ears. The seemingly odd outcome arises both from the fact that the superb modes devised by Joe Taylor and his merry band can makes sense of extremely weak signals in this nether region, but also the way we define noise is rather arbitrary.

When your WSJT-X software shows that you have decoded a signal at -20dB, that relates to the noise factor for the SSB filter, and in reality it is not 20dB below what you can hear. However, make no mistake, it is a lot below what you can hear, just not quite 20dB. Let us take, for the sake of argument 10dB below what you can hear. Imagine that. Think of a signal that needs to be 10 times louder for you even to hear it, and then imagine decoding the weak version. Pretty impressive.

The fact is that the minimum signal to noise ratio required for reception of SSB is higher than that required for CW, which in turn is higher than that required for, say, JT65.

You may think of it this way. You are working a nice distant dx station just as the band closes as the MUF falls. In other words, rather than being below the "maximum usable frequency" (MUF), you now find yourself operating above the MUF. Whilst on SSB the signal would have faded into the noise, and you can no longer hear it on the loudspeaker, on FT8 or JT9 you are still about to complete the QSO. Magic. Except that it happens all the time if you use FT8 or JT9 (or JT65 or WSPR). You just keep completing QSOs where you cannot hear the other station in your loudspeaker.

However, there is another way to look at this. For an SSB operator the band has closed. They cannot make a QSO as the MUF has fallen and "the band has closed". But you, as a data mode operator can still work people. What you are doing is using what is called "above the MUF" propagation.

In effect, using these data modes has made an otherwise closed band stay open for longer.

Let us have yet another take on this. When I started on data modes back in the 1970s I used RTTY. I might be appalled by that mode these days, but it was cutting edge then when nobody had a PC. RTTY was (should be past tense) a mode which basically replaced the microphone with a bulky, oil-spewing, unreliable, clattering electro-mechanical beast. You did not get any extra performance out of this contraption, it just meant that your QSO got printed out instead of spoken. Unlike RTTY, WSJT-X slow modes are not just a text-based replacement for voice or CW. They out-perform SSB by being able to be used successfully in conditions where phone, RTTY and CW would not work at all.

In the 1970s, during any opening, my RTTY success directly mirrored by SSB success. If the band was "open" I could use SSB or RTTY. If the band was "closed" then both stopped working. But the WSJT-X slow modes continue to work. So how does that happen? Surely the F-layer (or the E-layer) is either bending the signals back to earth, or it isn't. How can using different mode make a band open?

Let us go back to basics. The diagrams are my own (copyright!) handiwork, not to scale and can be enlarged by clicking on them. The QST article is based on 28MHz and F-layer propagation, but there is no reason why the same principles would not apply to other bands or E-layer propagation. For this purpose though I will stick to the same example as the article.

When the band is "open" the ionosphere bends (some of) the signal back down to Earth in the well known way. The classic diagram shows band open ...

... (above) where you would expect to find propagation between A and B, and (below) closed, when you would expect nothing to happen between A and B ...
If this was all there was to it, everything would be as we expect. But once again the simplistic diagrams we all used to learn radio theory let us down.

The diagrams above show the F-layer as if it is a thin line which either reflects (band open) or refracts (band closed) the radio signal. In reality we would have no propagation at all if that was the case. The F-layer could never reflect radio signals at the angles we transmit them. The F-layer is not a mirror, it is a layer of ionised gas which has a structure of steadily varying density. This variation in density results in a very large number of small refractions of the signal, gradually bending it down until it is almost horizontal, and only at that angle is there one, small, reflection which returns the signal via a whole series more of refractions.

So almost all the work of returning our signals to Earth is done by a large number of refractions. Let us look at a diagram of how the F-layer would look - and this is definitely not to scale - when the band is open ...
The signal follows the green line inside the F-layer. It starts to bend as soon as it enters the F-layer, refracted by the changing density it passes through. It is almost as though the F-layer was made up of a series of very thin layers on top of each other, each with a different density.

What nobody told us in radio school was that every time one of those refractions takes place, there is also a reflection. This has been known for hundreds of years in optics, and light is just a different wavelength of electro-magnetic energy from radio, so the same principles apply. The Fresnel equations can calculate the relative strengths of the reflection and the refraction. The other basic optical principles apply too - so the angle of the diffraction will depend on the relative difference in density, but the angle of the reflection will still be the same as the angle of incidence. Which means that actually we get something like this ...
Why did nobody tell us about this? In the real world of radio the many reflections are small in relation to the strength of the eventual main signal. Not only are they low in relative strength, they are directed slightly differently and sometimes out of phase. So  in the world of 20 metre band SSB you often never notice them. They do reach Earth, but they are weak enough to have been considered irrelevant.

In fact, given the noise handling ability of your radio you might never hear them. But JT65 can.

And JT9, FT8 and WSPR can hear them too. WSJT-X slow modes can successfully decode signals well below what we can hear. You might correctly take that to mean that they can hear weaker stations when the band is open, but it can also mean you can work stations when otherwise the band is closed and you can hear nothing but noise on the loudspeaker.

Moving on from the time the band is open until when it is closed we would get this diagram for the ionosphere ...
This is what we knew: it explains why we hear nothing when the band is closed. But the weaker reflected signals are still directed towards Earth, as shown below...


These weaker signals will pass through the F-layer, though they may be bent a bit in the process, and some will reach the ground. If they are WSJT-X slow modes they can be detected down to much lower levels than would be possible for voice signals.

The result of this is that before the bands open, and after they close, the weak signal modes should be able to decode signals we cannot hear above the noise. We need to re-think our existing assumptions. Most MUF predictions are made on the basis of a conventional SSB radio with about 100W and a dipole or small beam. The QST article suggests that a path of almost 3,000km, a single F-layer hop, would be open for an SSB contact at 28MHz (obviously) with the MUF of 28MHz. In fact this could be done on low power, with 100mW of CW doing the trick. But of course once the MUF falls below 28MHz this path is lost and the band is considered to be closed.

The article goes on to suggest that CW using a narrow filter could keep the path open at 28MHz at 10W even if the MUF falls to 25MHz. So, operators are already using "above the MUF" propagation. However, using FT8, JT65 or JT9  this path would be open with the MUF of around 23MHz. So the ten metre band would sound dead, SSB would be possible on fifteen metres, but data operators could operate on the otherwise "closed" ten metres. CW operators might get away with the WARC band on twelve metres.

The significance of this is that the MUF rises to 23 MHz far more often than it reaches 28MHz.

The fact that WSJT-X data operators are making stacks of contacts when the band is open is already clearly demonstrated. But this other fact shows what some of us had already noticed - these modes can make contacts possible on an otherwise "closed" band.

It could be said that there is confusion over our own figure "maximum usable frequency". For practical reasons we have set this figure by taking the measured critical frequency using near vertical incidence reflections and multiplying it by a constant which produces a figure which works for SSB and the receivers we all normally use. However, the better sensitivity of these WSJT-X modes alters the constant to be applied. What we call "MUF" is really the "Maximum workable frequency for easy SSB contacts".

In a sense it is silly to talk about "above the MUF" contacts as F-layer propagation should be impossible above the MUF by definition if it is really the maximum usable frequency. However, I bet that the term MUF will continue in use to mean the frequency at which those easy F-layer QSOs start happening.

I avoid the easy contacts and go for the difficult ones. But you knew that already.

So what happens if the MUF is much lower, and the F-layer basically disappears? Does this "above the MUF" propagation disappear? Not totally. At that point although reflection more or less stops, even at a very low level, scattering from the atmospheric molecules will still occur and produce just the sort of weak signals which JT modes love. Ionoscatter has been known for years too, but it usually requires high power as it produces weak signals - something which JT modes are ready to help with.

I should have seen this coming. I knew that these modes can receive much weaker signals than the human ear. What I had not thought about was that they could in effect outwit the conventional calculation of "maximum" usable frequency. None of this is new - Isaac Newton (1642-?1726) knew about reflections during refraction in light. The people who made my camera or my glasses spend a lot of time trying to minimise the effect by applying coatings to the lenses. However, our radio educators thought fit not to remind us about it. As so often, the standard diagram in the radio text books is over simplified. Oh yes, it was over simplified on this blog too ... mea culpa.

When I started using WSPR I told some old timers about the results I was getting. Their immediate reaction was that it is was impossible and somehow WSPR must be using the internet rather than radio. When I assured them that WSPR was all radio over the whole route from my antenna to the other station's antenna they were very sceptical. Now I know what was happening. More recently as WSJT-X modes became more popular on 6m, several of us have been finding paths open when the band is otherwise "closed".

As always, more investigation is required.

This is my stumbling attempt to explain this. I encourage you to look up the much clearer explanation by K9LA in QST if you can. I hope to put it to more use soon.

And thanks again to GM4JJJ for putting me on to this. It explains a lot of what I have been experiencing but not understanding.

I wonder how often stations turn on, listen to the band, hear nothing, and switch off. What would happen if they tried calling CQ on FT8?

73

Jim
GM4FVM

Thursday, 14 September 2017

Did I miss an aurora?

I have been in Blankenberge which, as is well known, is in Belgium. It is customary in this blog to show the means of transport I used at the end of my trip (how did that come about?). Anyway here is a tram at De Panne, which was as far as we got before heading back to Blankenberge...
Tram at De Panne 09 September 2017
We did use trains which were more comfortable and rather faster to reach Belgium in the first instance.

The journey back from De Panne was, at 115 minutes, the longest time I have ever travelled in one tram. We broke the journey on the way out, but as we were tired on the return we decided to do the whole thing in one trip. Result - seriously numb bums. Almost as bad as the plastic seats on Euskotren from Bilbao to Irun via Donostia.

Anyway, it was clear to me that all my recent talk of the "end of season wind-down", and me decamping to Belgium, doesn't stop auroras happening. If I learned anything in statistics class (did I learn anything in statistics class?) it was that anything with a distinct probability, however small the probability, will happen sometime if you wait long enough. Like motorcycle accidents and unexpected pregnancies, if the basic requirements keep being met, then eventually even an unlikely outcome will occur, given enough time. So we shouldn't be surprised, and that also explains the scars on my leg, my broken upper jaw, and other things like me being here in the first place.

I have gone on about this before. The "Carrington Event", the most violent solar storm seen and recorded (so far), occurred in 1859. When I was at school we were told it was a "once in a hundred years" event, so we have better expect it soon. Now we are told that it was a "once in 400 years" event. We shall see. "Once in a hundred years" floods seem fairly common these days.

The aurora on 8 September was a good one. Not in the Carrington Event category, as one of those would threaten power systems and satellite communications, but good all the same. As we have not had a good aurora for some time, and as I missed it (boooh-hoooh), I am lucky to be able to draw on the reports of others to describe what it was like. Mike, GM3PPE is about 30km South West of me in IO85, David GM4JJJ is about 90km North-West of me in IO86, and both gave me accounts of the event. Thank you to both of them for allowing me to quote from their reports.

The basic plan for aurora is to be on alert for anything untoward happening. Mike was able to send me this email on 6 September which was very accurate in predicting the events of the 8th.
======================================
"I was on 15 meters this morning working stations on FT8 when suddenly at 0910Z all signals disappeared.  The same on the other HF bands.  I thought my rig had broken, or the antenna fallen down!  Then 30 minutes later all signals back.  A massive event on the sun.  Middle of the day another total radio blackout.  Apparently the biggest solar X class solar flare for several years.  It looks like there was an accompanying CME in our direction, which augurs well for a big Au event over the next 24 to 36 hours."

After the aurora Mike sent this report "6 meters started buzzing at lunchtime and closed to Au contacts mid evening. Kp went up to 7 and the geomagnetic records went purple.  I have never seen that happen with previous events.

I worked about 40 stations all over the UK and Europe, with some even on SSB.  Signals were very strong with some peaking 59A on my K3.  Towards the end of the event some signals start going Es, with hardly any Au buzz at all.  LA8HGA was particularly noticeable for this effect."
" ... the Au opening ended quite abruptly for me at about 1830Z - as you say, quite early.  In terms of DXCC countries, I worked G, GM, GW, EI, ON, LY, SM, F, DJ, PA and LA, making a total of 21 squares.  Not a bad haul for one day on 6 meters!"
=====================================
Quite right Mike, and well done on that. 21 squares on 6m is remarkable and once again it proves what can be done on VHF.

SSB can be useful during auroras, even if the distortion makes it difficult to use voice. There is a large band of amateurs who never use CW, and during an aurora they can only be reached on phone. If I need the square I can use almost any mode I need to, however difficult that might be.

Mike sent me a link to the British Geological Survey site:-

http://www.geomag.bgs.ac.uk/education/current_activity.html

This certainly shows the 8 August event in context (and shows the purple bar graph which was a new one on me too) ...
BGS "Current Geomagnetic Activity" chart for Lerwick taken on 14 September 2017
Click to enlarge if necessary (as always).

Note too that geomagnetic activity had another smaller peak later in the week and there may be some more action to come. The fact that you often see possible warnings of auroral events when nothing actually appears is part of the joy and the frustration of the hobby. This time who knows?


David, GM4JJJ sent me these useful illustrations of his operations:- 
======================================

2m Aurora Map showing worked squares with 500km intervals in red

4m Aurora showing worked squares with 500 km intervals in red

OH SLICE meteor Radar showing the solar flare attenuation at 36.9 MHz on the day before Aurora at around Noon. 
latestMeteorCount.png

==========================================
Thanks and congratulations David, well done.

It takes a fair amount of determination to work stations on 2m during an aurora. The Doppler shift is greater as the frequency increases. This makes life harder.

Clearly 8 August 2017 was a "big" aurora in every way. 

I am sorry I missed it. I used to work in Belgium and I always enjoy practising my rusty Vlaams (and indeed Dutch and French, if I can admit to that too). 

En waarom niet? Een fles Kwak voor GM4FVM!


Thanks for all the information and let us see if there is another aurora round the corner.

73

Jim
GM4FVM

Friday, 1 September 2017

31 August Es and the end of the season wind down

Here, as I gaze over my estates from the lofty heights of the old stone tower at the end of the West Wing, I see the workers toiling in the fields to save the wheat crop ...
Harvesting the wheat as seen from GM4FVM's QTH on 27 August 2017
Actually, there does not seem to be too much toil involved sitting up there in the cab of the harvester watching the machinery doing its work.

If I really did have a West Wing with a stone tower on it, I would have attached another antenna to it long before now. Especially if it had lofty heights.

No, this week I have been watching the field behind the house being sucked clean of all its produce, then straw baling being completed. The straw bales have already been removed and no doubt ploughing and drilling will be complete within days. Who knows what crop will be pushing up next year?

When it comes to harvest time I start thinking of Autumn, and the end of the Es season. Time for me to review the Summer and then batten down the hatches for Winter.

This year I feel that I have overdone things over the Summer. I think that it is time for a break from operating and use the opportunity to spend a bit more time with my other projects.

Most of my amateur radio life has been marked by upsurges and downswings in activity. I am not an operator with just a rig and a bit of wire, but nor am I someone who invests all his time and money in this hobby. I move around the middle ground, sometimes getting too much involved and having to step back a bit. So this is time for a step back.

The Es season is over, the Christmas VHF Contests are over the horizon. Time for a measured reaction. The Autumn promises more Es, more aurora, more meteor scatter, and more tropo. So bring it on, as I am not going hunting for it.
===============================================
 31 August produced a nice Es opening.

I knew it was coming towards the end of the week because the RSGB VHF propagation report said there wasn't going to be one then, but "at the head of the week" and it would "struggle" due to "weak Jet Streams".

So, of course with this promise I reckoned that if they say it will happen weakly at the beginning of the week I should start looking for a strong one at the end of the week. I find that is the best way of treating these reports, and it has always worked for me.

I am not saying that Jet Streams have nothing to do with Es (though that is what I think, but it is hard to prove a negative), but what I can say with fair certainty is that using them for prediction does not work. Relying on the predicted Jet Stream to base an Es prediction is always wrong here.

Jet Streams might be implicated in Es (I doubt it) but if this is the track record of making predictions based on them, what I have seen over the last year or so makes the predictions look laughable.
Es as reported by DXMaps at 21:18 on 31 August 2017.
I had a number of nice contacts, including I6FLD, IK4ISR, IZ8IBC, SP7QJF and SP8NR on 50MHz, and returning regulars DD3SP and OK2BRD on 70MHz.

Actually Sandro, DD3SP was an interesting one on 4m as I worked him first with meteor scatter on MSK144 at 13:16. I guessed that would be my last German station on 4m for this year, as their temporary authorisation ended on 31 August. But then I worked him again on SSB on Es at 20:32. I also worked Jiri, OK2BRD twice, both on Es. First by FT8 at  20:37, then again on SSB at 20:45.

It is notable that the last QSO was at 22:55 and I only stopped because I needed some sleep. This bout of Es was generated by a geomagnetic storm caused by a coronal hole. There was no widespread aurora, though I did hear the usual Northern Ireland beacons over the previous day or so. I often see this Es pattern repeat itself during positive polarity coronal hole disturbances. Perhaps today we will get some negative polarity material from the Sun too, and maybe an aurora.

10m Es was pretty good as well...
10m Es on WSPR, 31/8/17. Presumably Mauritius was F layer, but you never know!

A great day of Es to round off the season, so to speak. I will miss the German stations on 70MHz even though, due to conditions, they have not been as prevalent as previous years. I already miss Italian stations who we have not heard on 4m for several years.
===============================================
It definitely has been a busy Summer and I am in need of a bit of a break. Never mind the radio, a brilliant Tour de France (Rigobero Uran was brilliant) was star of the season. Now the battling of Contador, Nibali and Aru are keeping me welded to the television and La Vuelta Ciclista a Espana. Not just cycling, but cricket has been superb too, plus of course Masterchef Australia. What a Summer.

I am not going QRT, just taking a bit easier. There is plenty more for this blog, or so I hope anyway.

73

Jim

GM4FVM